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Abstract

This paper attempts to investigate synchronization of a coupled dynamical
system with random noise on a network (graph). Some mathematical results
are obtained in this paper, first, a synchronized threshold is given for a linearly
coupled dynamical system perturbed by the random noise; second, when the
linearly coupled dynamical system with random noise reaches synchronization,
the long time behavior of identical orbit on each node is discussed; finally, some
interesting comparison between the synchronization of the coupled gradient
system and its small random perturbed system is considered.

PACS numbers: 05.45.Xt, 02.50.Fz, 05.40.Jc

1. Introduction

Synchronization is a universal phenomenon in a variety of fields of engineering and sciences.
For example, semiconductor lasers and fireflies to fire in unison (see [14]). Recently, an
increasing number of articles have been devoted to investigate synchronization phenomena in
complex networks of linearly coupled identical dynamical systems (see [3, 6, 10–12, 17–20]).
The basic mathematical model in most of these articles is studied as follows (see [6, 10, 17]).

The dynamical network consists of N identical linearly and diffusively coupled nodes,
with each node being a d-dimensional dynamical system. The state equations of the network
are

ẋi = f (xi ) + c

N∑
j=1
j �=i

aij�(xj − xi ), i = 1, 2, . . . , N, (1.1)
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where xi = (
xi1 , xi2 , . . . , xid

)T ∈ R
d are the state variables of node i, the constant c > 0

represents the coupling strength, and, for simplicity, � = diag(1, 1, . . . , 1︸ ︷︷ ︸
q

, 0, 0, . . . , 0) ∈

R
d×d , 1 � q � d is a diagonal matrix linking the corresponding components of coupled

nodes. This means that two coupled nodes are linked through their 1st, . . . , qth state
variables. If there is an edge between node i and node j (i �= j), then aij = aji = 1;
otherwise, aij = aji = 0 (i �= j). If the degree ki of node i is defined as the number of edge
of node i, then

N∑
j=1
j �=i

aij =
N∑

j=1
j �=i

aji = ki, and let aii = −ki, i = 1, 2, . . . , N.

Then equations (1.1) can be written as

ẋi = f (xi ) + c

N∑
j=1

aij�xj , i = 1, 2, . . . , N. (1.2)

Suppose that the network is connected in the sense that there are no isolate clusters, then the
coupling matrix A = (aij ) ∈ R

N×N is a symmetric and irreducible matrix. It is well known
that zero is an eigenvalue of A with multiplicity 1 and all the other eigenvalues of A are strictly
negative (denoted by 0 = λ1 > λ2 � λ3 � · · · � λN ).

In Wang and Chen’s paper [17], the dynamical system (1.2) is said to achieve
(asymptotical) synchronization if

xi (t) → s(t), t → ∞, i = 1, 2, . . . , N, (1.3)

where s(t) ∈ R
d is a solution of an isolate node, namely,

ṡ(t) = f (s(t)). (1.4)

The main mathematical results are given in [10, 17].

Theorem 1.1. (Lemma 2 in [17] and theorem 1 in [10].) Suppose that there exists a d × d

diagonal matrix � > 0, and two constants k̄ < 0 and τ > 0, such that

[Df (s(t)) + k�]T � + �[Df (s(t)) + k�] � −τId (1.5)

for all k � k̄, where Id ∈ R
d×d is a unit matrix. If

c �
∣∣∣∣ k̄

λ2

∣∣∣∣ , (1.6)

then the synchronization states (1.3) are exponentially stable.
Moreover, if each individual d-dimensional dynamical system is chaotic, let the maximum

Lyapunov exponent of the individual node be hmax > 0, then

c � hmax

|λ2| , (1.7)

which implies that the synchronization states (1.3) are exponentially stable.

However, there always exist all kinds of random noises in the real world. So, it is natural
to question that does the deterministic dynamical system on network (1.1) effectively and
essentially model the synchronization phenomenon in the real world, in other words, how does
the random perturbation influence on the behavior of (1.1)?
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In this paper, we focus on investigating some mathematical results of synchronization
of (1.1) under the influence of random noises, which are introduced in the following Ito’s
stochastic differential equation (SDE):

dXi,ε
t = f

(
Xi,ε

t

)
dt + c

N∑
j=1

aij�X
j,ε
t dt +

√
ε1 dWt +

√
ε2σ

(
Xi,ε

t

)
dBi

t , i = 1, 2, . . . , N,

(1.8)

where c, � and (aij ) are defined as the same as those in (1.1), (Wt)t�0 is a d-dimensional
Brownian motion,

(
B1

t

)
t�0,

(
B2

t

)
t�0, . . . ,

(
BN

t

)
t�0 are r-dimensional Brownian motions, and

all of them are mutually independent. (Wt)t�0 in (1.8) describes the random noise of exterior
environment imposing on the whole dynamical network, and

(
Bi

t

)
t�0 represents the interior

random fluctuation of the dynamical system in the node i. ε1, ε2 are the intensity of the
random noises (Wt)t�0 and

(
Bi

t

)
t�0, respectively. However, stochastic processes with internal

noise cannot always be written in the above Langevin form. This paper is restricted in
considering form (1.8), because some tools of stochastic analysis can be conveniently used here
(see [8, 21]).

Recently, there are some works studying the synchronization on the coupled network
with random factors by the approach of stochastic analysis, see [4, 5, 15, 16]. For example,
in [4], Berglund, Fernandez and Gentz consider SDE (1.8) of a one-dimension N periodic
chain coupled with its nearest neighbors, of which ε1 = 0 and f (x) is the negative gradient
of a bistable potential 1

4x4 − 1
2x2. They obtain the precise (asymptotic) synchronization–

desynchronization threshold estimates by some sophisticated mathematical theories, such as
metastability and twist map of the integrable system. In [15, 16], Qian and Wang, Qian and
Zhang study the frequency locking (frequency synchronization) of coupled oscillators under
white noises in the view of non-equilibrium physics, such as entropy production. Deng, Ding
and Feng consider the case of the stochastic coupled matrix, and some general approach is
presented in [5].

For discussing synchronization of (1.2), two aspects are indicated in theorem 1.1, one is
that the long time behavior of all nodes converges to an identical orbit, the so-called being at
the synchronized state and this convergence is determined by the characteristics of individual
node’s dynamics and the topology of the entire coupled network; the other is that the identical
orbit is the same as s(t), the solution of the equation of an isolate node (1.4). Therefore,
in the analogical spirit of theorem 1.1, the main purposes of this paper are to investigate the
following questions:

(i) Is there a synchronized threshold similar to (1.6) or (1.7) in theorem 1.1, which is
determined by the characteristics of individual node’s stochastic dynamics and the
topology of the entire coupled network? How to understand the synchronization with
random noise?

(ii) What is the identical orbit at the synchronized state in equation (1.8)? Is there some
relationship between this identical orbit and asymptotical behavior of the SDE on
individual node

dXε
t = f

(
Xε

t

)
+

√
ε1 dWt +

√
ε2σ

(
Xε

t

)
dBt? (1.9)

(iii) As ε1, ε2 → 0, does the synchronized state in equation (1.8) converge to that of
the corresponding dynamical network without random perturbation, as described in
equation (1.2)?

Through some techniques of stochastic analysis, loosely speaking, the main results in this
paper are: (1) for the general f (x) and connectivity of the network in (1.8), some qualitative
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conditions of synchronization are given; (2) for some special classes of (1.8), even for a
concrete f (x) and topology of the network, some properties are shown in detail to answer (ii)
and (iii) positively or negatively.

This paper is organized as follows. The main results are given in section 2, which contains
three subsections. In section 2.1, similar to Lyapunov’s direct method (see [20]) or the global
stability analysis (see [2]), a synchronization threshold is given by employing Ito’s formula.
In section 2.2, question (ii) is discussed in different cases: (1) ε1 > 0 and ε2 = 0; (2) ε1 = 0
and ε2 > 0. These results demonstrate that the exterior environment noise of the whole
systems and interior noise in each node bring the distinct effect on the synchronized states. In
section 2.3, in order to compare the synchronized behavior of the coupled dynamical network
with small random perturbation (ε1, ε2 → 0) and the deterministic coupled dynamical network,
a class of the reversible SDE with invariant probability measure (corresponding to the gradient
system in deterministic dynamics, which is a very special class of dynamical systems) is
considered particularly here. This simple and basic model gives some flavor of how the small
random noises give rise to the synchronization (desynchronization) on the desynchronized
(synchronized) coupled dynamical network. Finally, the proofs of lemmas and theorems in
section 2 and some useful lemmas are shown in section 3.

2. Main results

Let

M = A ⊗ � =

⎛
⎜⎜⎝

a11� a12� . . . a1N�

a21� a22� . . . a2N�

. . . . . . . . . . . . . . . . . . . . . .
aN1� aN2� . . . aNN�

⎞
⎟⎟⎠ ,

then equations (1.8) can be written as

dXε
t = f

(
Xε

t

)
dt + cMXε

t dt +
√

ε1 dWt +
√

ε2σ
(
Xε

t

)
dBt , (2.1)

where Xε
t = (

Xε
1, . . . , X

ε
N

)T
, f(x) = (f (x1), f (x2), . . . , f (xN))T , Wt = (Wt , . . . ,Wt)

T ,

σ (x) = (σ (x1), σ (x2), . . . , σ (xN))T and Bt = (
B1

t , . . . , B
N
t

)T
. Denote S = {(x, x, . . . , x) ∈

(Rd)N , x ∈ R
d}, the diagonal of space (Rd)N , and Sδ is the δ neighborhood of S.

2.1. A synchronized threshold for random cases

In this subsection, some assumptions of f, � and σ are considered as follows:

(A 2.1.1) f is a global Lipschitz continuous function with Lipschitz constant K, i.e.

‖f (x) − f (y)‖ � K‖x − y‖;
(A 2.1.2) � = diag(1, 1, . . . , 1);
(A 2.1.3) σ is a bounded and global Lipschitz continuous d × r-matrix-valued function,

i.e.

|σmn(x) − σmn(y)| � l‖x − y‖, |σmn(x)| � L, 1 � m � d, 1 � n � r.

Theorem 2.1. If c > K
|λ2| , then, for any δ > 0, r > 0, and ε1 > 0,

lim
ε2→0

lim
t→∞ sup

‖x‖�r

P
(
Xε

t ∈ Sδ

∣∣Xε
0 = x, x ∈ (Rd)N

) = 1. (2.2)
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Comparing with theorem 1.1, the synchronization in this theorem says that if the coupling
strength c is larger than a threshold K

|λ2| , then the system is synchronized whenever all the nodes
remain closed to each other with high probability as ε2 small enough. Moreover, if ε2 = 0, i.e.
there is only exterior environment noise on the system. Thus, we have the following theorem:

Theorem 2.2. If c > K
|λ2| and ε2 = 0, then for any ε1 > 0,

X1,ε1
t = X2,ε1

t = · · · = XN,ε1
t , t → ∞. a.s.P

i.e. in probability 1, for any δ > 0, there is a t0(ω) > 0, for any t > t0(ω),

Xε
t ∈ Sδ.

In fact, this theorem can be regarded as a conclusion of theorem 3 in [20] and
theorem 2.1 in [19], and shows that exterior environment noise on the global system does
not destroy the synchronization.

A synchronized threshold K
|λ2| in the above theorems is determined by the global Lipschitz

constant of the system on the individual node f and the eigenvalue λ2 of the coupled matrix
of the network. It seems that this threshold is rougher than those in equation (1.6), (1.7), since
[10, 17] only analyze the local linear stability at s(t) (see equation (1.4)). Corresponding to
theorem 1.1, Lyapunov exponent and the stability at a stationary solution in random dynamical
systems can be found in [1, 13]. Some finer synchronized thresholds will be discussed in the
authors’ further research by utilizing the method of random dynamical systems.

2.2. Identical orbit at synchronized state

A subsequent important problem is to describe the identical orbit when the dynamical systems
of all the nodes achieve synchronization. Since the long time behavior of the system with
random noise is understood by its invariant measure, in this subsection, some relations of the
identical orbit at synchronized state and the invariant probability measure of an individual
uncoupled node (assuming this measure exists and is unique) are explored.

First, the effect of random noise of exterior environment (Wt , t � 0) on the whole systems
is considered, i.e. ε2 = 0 in (1.8),

dXi,ε1
t = f

(
Xi,ε1

t

)
dt + c

N∑
j=1

aij�X
j,ε1
t dt +

√
ε1 dWt, i = 1, 2, . . . , N, (2.3)

and its corresponding equation on the individual uncoupled node is

dX̃ε1
t = f

(
X̃ε1

t

)
dt +

√
ε1 dWt. (2.4)

Besides f and � satisfying A 2.1.1 and A 2.1.2, one assumes that equation (2.4) has a unique
invariant probability measure μ̃ε1 . By the classic ergodic theory of diffusion processes (see
[21]), this implies that for all B ∈ B(Rd), Borel’s σ fields on R

d ,

lim
t→∞

1

t

∫ t

0
1B

(
X̃ε1

s

)
ds = μ̃ε1(B). (2.5)

Thus, one has

Theorem 2.3. For any initial value of the solution of (2.3), in probability 1,

lim
t→∞

1

t

∫ t

0
1B

(
Xi,ε1

s

)
ds = μ̃ε1(B). (2.6)

5
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Although it is difficult to compare precisely the identical orbit in equation (2.3) and the
orbit in equation (2.4) for any t large enough, the above theorem shows that the ‘frequency’
of the identical orbit visiting B converges to the invariant measure μ̃ε1(B) as t → ∞.

Second, for the coupled SDE

dXi,ε2
t = f

(
Xi,ε2

t

)
dt + c

N∑
j=1

aij�X
j,ε2
t dt +

√
ε2σ

(
Xi,ε2

t

)
dBi

t , i = 1, 2, . . . , N, (2.7)

and its corresponding equation on the individual uncoupled node

dX̂ε2
t = f

(
X̂ε2

t

)
dt +

√
ε2σ

(
X̂ε2

t

)
dBt, (2.8)

(i.e. ε1 = 0, ε2 > 0 in (1.8)), a natural problem is:
If (2.7) achieves synchronization, i.e. satisfies (2.2) in theorem 2, does

lim
ε2→0

lim
t→∞

[
1

t

∫ t

0
1B

(
Xi,ε2

s

)
ds − μ̂ε2(B)

]
= 0, i = 1, 2, . . . , N (2.9)

hold? where μ̂ε2 is the unique invariant probability measure of the SDE (2.8).
The effect of the interior random fluctuation is much more complicated than that of the

exterior random noise discussed above. In general, SDE (2.7) does not satisfy (2.9), for
example:

Example 2.4. If N = 2, d = 1, σ (x) = 1, and f (x) = −U ′(x) in SDE (2.7), (2.8), where
U(x) satisfies

∫
R

exp
{−2U(x)

ε2

}
dx < ∞, for any ε2 small enough, then, it is easy to know that

με2(dx1 dx2) ≡ C̄ exp

{
−2U(x1) + 2U(x2) + c(x1 − x2)

2

ε2

}
dx1 dx2, (2.10)

μ̂ε2(dx) ≡ Ĉ exp

{
−2U(x)

ε2

}
dx (2.11)

are the unique invariant measures of SDE (2.7), (2.8) respectively (C̄ and Ĉ are the normalized
constants).

Moreover, if one assumes that U(x) ∈ C3(R), and for zi ∈ {z1, z2} = {z ∈ R;U(z) =
minx∈RU(x)}, U ′′(zi) > 0, i = 1, 2, then for any open neighborhood E1 of z1, satisfying
z2 /∈ E1, equality (7.5.22) at p436 in [21], and lemma 3.6 in section 3 imply

lim
ε2→0

lim
t→∞

[
1

t

∫ t

0
1E1

(
Xi,ε2

s

)
ds)

]
= [(U ′′(z1))

2 + 2cU ′′(z1)]−
1
2∑2

i=1[(U ′′(zi))2 + 2cU ′′(zi)]−
1
2

, (2.12)

and

lim
ε2→0

μ̂ε2(E1) = |U ′′(z1)|− 1
2

|U ′′(z1)|− 1
2 + |U ′′(z2)|− 1

2

. (2.13)

This shows that (2.9) does NOT hold.
However, if z1 = z2, obviously, (2.9) holds.

2.3. Comparison of synchronization between a coupled gradient system and
its small random perturbation

It is a challenging problem in probability theory to compare the long time behavior of the
dynamical system and its small random perturbation (see [7]). So, it is difficult to give a
clear relation of synchronization between a coupled dynamical system and its small random

6
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perturbation. However, because the gradient dynamical system ẋ = −∇U(x) is one of the
simplest dynamical systems and its small random perturbation dxt = −∇U(xt ) dt +

√
ε2 dBt

has a unique invariant measure Ĉ exp
{− 2U(x)

ε2

}
dx, if

∫
exp

{− 2U(x)

ε2

}
dx < ∞, in this

subsection, a complete comparison of synchronization of the coupled gradient system

ẋi = −∇U(xi ) + c

N∑
j=1

aij�xj , i = 1, 2, . . . , N, (2.14)

and its small random perturbation

dXi,ε2
t = −∇U

(
Xi,ε2

t

)
dt + c

N∑
j=1

aij�X
j,ε2
t dt +

√
ε2Id dBi

t , i = 1, 2, . . . , N (2.15)

are presented.
In this subsection, some assumptions of U,� are considered as follows:

(A 2.3.1) U(x) ∈ C2(Rd , R
1),

∫
exp

{− 2U(x)

ε2

}
dx < ∞, for any ε2 > 0,

lim‖x‖→∞ U(x) = ∞ and for any r > 0, {x ∈ R
d
∣∣‖x‖ � r} is compact. For

example, if for some r > 0, there is a constant C > 0, such that, for all x ∈
R

d\BRd (0, r), Hess U(x) > CId , then it is easy to show that the above assumptions
of U(x) hold, where Hess U(x) ≡ (

∂2U(x)

∂xi∂xj

)
1�i,j�d

, the Hessian matrix of U;

(A 2.3.2) The number of the elements in � ≡ {x ∈ R
d | U(x) = miny∈Rd U(y)},

which is denoted by m, should be finite. Without any loss of generality, one assumes
miny∈Rd U(y) = 0;

(A 2.3.3) � = diag(

d︷ ︸︸ ︷
1, 1, . . . , 1︸ ︷︷ ︸

q

, 0, 0, . . . , 0), q � d.

Let H(x) ≡ ∑N
i=1 U(xi ) − cxT Mx

2 , x ∈ (Rd)N , then, the number of the elements in

� ≡ {x ∈ (Rd)N |H(x) = min
y∈(Rd )N

H(y)}

is also finite by assumption A 2.3.2, and it is easy to show that

με2(dx) ≡ C̃ exp

(
−2H(x)

ε2

)
dx

is the unique invariant probability measure of (2.15).

Theorem 2.5. For all δ > 0, let �δ denote the δ-neighborhood of �, then for any r > 0

lim
ε2→0

lim
t→∞ sup

‖x‖�r

P
(
Xε2

t ∈ �δ

∣∣Xε2
0 = x, x ∈ (Rd)N

) = 1. (2.16)

This theorem implies that the synchronization of the dynamical system (2.15) is
determined by the location of �. Through analyzing the relation of m,� and the location of
�, the precise synchronized condition is obtained as follows:

Theorem 2.6. The dynamical system (2.15) can achieve synchronization in the sense of (2.2),
if one of the following three conditions is satisfied:

(1) m = 1;
(2) m > 1 and q = d;
(3) m > 1, q < d, and for zk = (zk1, zk2, . . . , zkd) ∈ �, denoting z

(q)

k =
(zk1, zk2, . . . , zkq), for any k �= l, k, l = 1, 2, . . . , m, z

(q)

k �= z
(q)

l .

7
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On the other hand, let �̃ ≡ {z ∈ �N\S|z(q)

i = z
(q)

j , if aij �= 0, i, j = 1, . . . , N}. It is clear
that �̃ ⊂ �, �̃ �⊂ S, if m > 1 and q < d. Moreover, assuming that με2 converges weakly to
a probability measure μ, then, by [9], μ(�) = 1. So,

Theorem 2.7. If m > 1, q < d and μ(�̃) > 0, then there is a δ0 > 0 such that

lim inf
ε2→0

lim
t→∞ sup

‖x‖�r

P
(
Xε2

t /∈ Sδ0

∣∣Xε2
0 = x, x ∈ (Rd)N

)
> 0. (2.17)

Remark 2.3.1. Under A 2.3.1, similar to the section 2 in [9], με2 is tight and the limit measures
μ satisfy μ(�) = 1, where μ are not unique possibly. However, in some cases, it can be shown
that μ is unique, for example: if U(x) ∈ C3(Rd , R

1), and for any x ∈ �, det Hess H(x) �= 0,
then μ is unique and

μ(x) = (det Hess H(x))−1/2∑
y∈�(det Hess H(y))−1/2

,

where det represents the determinant of a matrix.

There are some simple but interesting conclusions obtained from theorem 2.6 and
theorem 2.7.

(1) The synchronization of the stochastic gradient system (2.15) can be achieved for any
coupled strength c in theorem 2.6, however, there is a synchronized threshold for a
general f in theorem 2.1 in subsection 2.1.

(2) In [4], Berglund, Fernandez and Gentz show that the deterministic coupled gradient
system cannot synchronize if the coupled strength is less than some critical value and this
dynamical system starts at the neighborhood of a stable equilibrium point of H(x) which
is not in S. However, theorem 2.6 implies that if the stochastic coupled gradient system
satisfies the conditions in the theorem, it always achieves synchronization (in the sense of
(2.2)) for any coupled strength and any starting point. In fact, the model discussed in [4]
satisfies the condition (2) of theorem 2.6.

(3) Theorem 2.7 demonstrates that in some special cases, the random noise can destroy the
synchronization of (2.14).

3. Proofs

Let 〈·, ·〉n denote the inner product and ‖·‖n denote the norm in R
n, n < ∞.

3.1. Proofs of theorems 2.1 and 2.2

Before the proofs of theorems 2.1 and 2.2, some lemmas are given under (A 2.1.2)–(A 2.1.3)
first.

Lemma 3.1. For x = (x1, . . . , xN) ∈ (Rd)
N
, xi ∈ R

d , i = 1, . . . , N,

〈x,−Mx〉dN = 1

2

N∑
i=1

N∑
j=1

aij‖xi − xj‖2
d , (3.1)

〈x,−Mf(x)〉dN � K〈x,−Mx〉dN , (3.2)

|λ2|〈x,−Mx〉dN � 〈Mx,Mx〉dN � |λN |〈x,−Mx〉dN . (3.3)

8
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Proof. Noting
∑N

i=1 aij = 0 and aij = aji , for x, y ∈ (Rd)N ,

〈x,My〉dN = 〈x, (A ⊗ �)y〉dN

=
N∑

i=1

N∑
j=1

aij 〈xi, (yj − yi)〉d = −
N∑

i=1

N∑
j=1

aij 〈xj , (yj − yi)〉d

= −1

2

N∑
i=1

N∑
j=1

aij 〈(xj − xi), (yj − yi)〉d . (3.4)

It is clear that (3.1) holds, and by the Cauchy–Schwarz inequality,

〈x,−Mf(x)〉dN = 1

2

N∑
i=1

N∑
j=1

aij 〈(xi − xj ), (f (xi) − f (xj ))〉d � K〈x,−Mx〉dN .

Since 0 > λ2 � · · · � λN are the eigenvalues of A, so do M. Therefore,

|λ2|〈x,−Mx〉dN � 〈Mx,Mx〉dN = 〈x,M2x〉dN � |λN |〈x,−Mx〉dN . �

Lemma 3.2. Let
(
Xε

t , t � 0
)

be the solution of SDE (2.1) with the initial value x =
(x1, . . . , xN) ∈ (Rd)

N
, then

∫ t

0

〈
MXε

s , σ
(
Xε

s

)
dBs

〉
dN

is a (Ft ) martingale, where Ft ≡
σ(Bs , Ws , s � t). This means that E

(∫ t

0

〈
MXε

s , σ
(
Xε

s

)
dBs

〉
dN

) = 0.

Proof. Because all the coefficients of SDE (2.1) are global Lipschitz continuous and the initial
value is deterministic, the classic proof of existence and uniqueness of the SDE imply that the
lemma holds (see [8]). �

Proof of theorem 2.1. By Ito’s formula,

d
〈
Xε

t ,−MXε
t

〉
dN

= 2
〈
Xε

t ,−M dXε
t

〉
dN

+ ε2 tr
(−Mσ

(
Xε

t

)
σ
(
Xε

t

)T )
dt

= 2
〈
Xε

t ,−Mf
(
Xε

t

)〉
dN

dt − 2
〈
MXε

t , cMXε
t

〉
dN

dt − 2
〈
Xε

t ,
√

ε1M dWt

〉
dN

− 2
〈
Xε

t ,
√

ε2Mσ
(
Xε

t

)
dBt

〉
dN

+ ε2 tr
(−Mσ

(
Xε

t

)
σ
(
Xε

t

)T )
dt, (3.5)

(3.4) implies,
〈
Xε

t ,M dWt

〉
dN

= − 1
2

∑N
i=1

∑N
j=1 aij

〈
X

i,ε
t −X

j,ε
t , (dWt−dWt)

〉
dN

= 0. Because
|σmn| < L, lemmas 3.1 and 3.2 imply,

Ex
〈
Xε

t ,−MXε
t

〉
dN

� 〈x,−Mx〉dN +
∫ t

0
(2K− 2c|λ2|)Ex

〈
Xε

s ,−MXε
s

〉
dN

ds + Nd2L2ε2 tr(−M)t,

hence, by the comparison principle

Ex
〈
Xε

t ,−MXε
t

〉
dN

�
[
〈x,−Mx〉dN +

Nd2L2ε2 tr(−M)

(2K − 2c|λ2|)
]

× exp[(2K − 2c|λ2|)t] − Nd2L2ε2 tr(−M)

(2K − 2c|λ2|) .

Since c > K
|λ2| , it follows that for any r > 0

lim
ε2→0

lim
t→∞ sup

‖x‖�r

1

2

N∑
i=1

N∑
j=1

aijE
∥∥Xi,ε

t − X
j,ε
t

∥∥2
d

= lim
ε2→0

lim
t→∞ sup

‖x‖�r

Ex
〈
Xε

t ,−MXε
t

〉
dN

= lim
ε2→0

Nd2L2ε2 tr(−M)

−(2K − 2c|λ2|) = 0.

So, the theorem holds by Chebyshev’s inequality. �

9
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Proof of theorem 2.2. If ε2 = 0, the model (2.1) can be written in the following form:

dXε1
t = f

(
Xε1

t

)
dt + cMXε1

t dt +
√

ε1 dWt . (3.6)

It is easy to compute that in probability 1,

d
〈
Xε1

t ,−MXε1
t

〉
dN

= 2
〈
Xε1

t ,−Mf
(
Xε1

t

)〉
dN

dt − 2
〈
MXε1

t , cMXε1
t

〉
dN

dt

� (2K − 2c|λ2|)
〈
Xε1

t ,−MXε1
t

〉
dN

dt.

Therefore, under the condition c > K
|λ2| , for any ε1, as t → ∞,

1

2

N∑
i=1

N∑
j=1

aij

∥∥Xi,ε
t − X

j,ε
t

∥∥2
d

= 〈
Xε1

t ,−MXε1
t

〉
dN

� 〈x,−Mx〉dN exp[(2K − 2c|λ2|)t] → 0.

(3.7)

Theorem 2.2 follows. �

3.2. Proof of theorem 2.3

Let
(
X

ε1
t ≡ (

X
1,ε1
t , . . . , X

N,ε1
t

)T
, t � 0

)
be the solution of (2.3) with the initial value

x ∈ (Rd)N .

Lemma 3.3. For any i = 1, . . . , N ,

Ex

[
exp

(
1

2

∫ ∞

0

〈
c√
ε1

N∑
i=1

aij�X
j,ε1
t ,

c√
ε1

N∑
i=1

aij�X
j,ε1
t

〉
d

dt

)]
< ∞, (3.8)

Ex

[∫ ∞

0

〈
c√
ε1

N∑
i=1

aij�X
j,ε1
t ,

c√
ε1

N∑
i=1

aij�X
j,ε1
t

〉
d

dt

]
< ∞. (3.9)

Proof of lemma 3.3. By the right-hand side of inequality (3.3) in lemma 3.1 and (3.5) in the
proof of lemma 3.2, noting c > K

|λ2| , then

(3.8) = Ex

[
exp

(
c2

2ε1

∫ ∞

0

〈(
MXε1

t

)
i
,
(
MXε1

t

)
i

〉
d

dt

)]

� Ex

[
exp

(
c2|λN |

2ε1

∫ ∞

0

〈
Xε1

t ,−MXε1
t

〉
dN

dt

)]

� exp

(
c2|λN |

2ε1
〈x,−Mx〉dN

∫ ∞

0
exp[(2K − 2c|λ2|)t] dt

)
< ∞. (3.10)

(3.9) = Ex

[(
c2

ε1

∫ ∞

0

〈(
MXε1

t

)
i
,
(
MXε1

t

)
i

〉
d

dt

]

� c2|λN |
ε1

〈x,−Mx〉dN

∫ ∞

0
exp[(2K − 2c|λ2|)t] dt

< ∞. (3.11)

�

10
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Lemma 3.4. For i = 1, . . . , N, let

Zi,ε1
t ≡ exp

(
−
∫ t

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s , dWs

〉
d

− 1

2

∫ t

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s ,

c√
ε1

N∑
i=1

aij�Xj,ε1
s

〉
d

ds

)
, (3.12)

then,
(
Z

i,ε1
t , σ (Ws, s � t)

)
is a closed martingale on [0,∞], and 0 < Zi,ε1∞ < ∞ in

probability 1.

Proof of lemma 3.4. Noting that

sup
t�0

Ex

∣∣∣∣∣
∫ t

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s , dWs

〉
d

∣∣∣∣∣
2

= sup
t�0

Ex

(∫ t

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s ,

c√
ε1

N∑
i=1

aij�Xj,ε1
s

〉
d

ds

)

� c2|λN |
ε1

〈x,−Mx〉dN

∫ ∞

0
exp[(2K − 2c|λ2|)t] dt

< ∞, (3.13)

it shows that
(∫ t

0

〈
c√
ε1

∑N
i=1 aij�X

j,ε1
s , dWs

〉
d
, σ (Ws, s � t), 0 � t � ∞)

is a uniformly
square integrable martingale on [0,∞] and

Ex

⎛
⎝∣∣∣∣∣

∫ ∞

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s , dWs

〉
d

∣∣∣∣∣
2
⎞
⎠

= Ex

(∫ ∞

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s ,

c√
ε1

N∑
i=1

aij�Xj,ε1
s

〉
d

ds

)

< ∞. (3.14)

So, lemma (3.3) and (3.14) imply
(
Z

i,ε1
t , σ (Ws, s � t)

)
is a closed martingale on [0,∞] by

Novikov’s condition (see [8]).
Moreover, (3.14) means that∣∣∣∣∣

∫ ∞

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s , dWs

〉∣∣∣∣∣ < ∞,

∣∣∣∣∣
∫ ∞

0

〈
c√
ε1

N∑
i=1

aij�Xj,ε1
s ,

c√
ε1

N∑
i=1

aij�Xj,ε1
s

〉
d

ds

∣∣∣∣∣ < ∞

in probability 1. Therefore, 0 < Zi,ε1∞ < ∞ in probability 1. �

Proof of theorem 2.3. Let (Wt , t � 0) is a d-dimensional Brownian motion on a probability
space (
,F, P ).

Denote P̃ x(·) ≡ Ex
(
1·Zi,ε1∞

)
, a new probability measure on (
,F∞), where · ∈ F∞, and

F∞ ≡ σ(Wt, t � ∞).

11
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Consider SDE (2.3), (2.4)

dXi,ε1
t = f

(
Xi,ε1

t

)
dt + c

N∑
j=1

aij�X
j,ε1
t dt +

√
ε1 dWt, (3.15)

dX̃ε1
t = f

(
X̃ε1

t

)
dt +

√
ε1 dWt, (3.16)

lemma 3.4 means that
(
X

i,ε1
t , t � 0

)
is the weak solution of SDE (2.4) (or (3.16)) under p̃x(·)

by the Cameron–Martin–Girsanov theorem (see [8, 21]). For any B ∈ B(Rd), let

Õ ≡
{
ω

∣∣∣∣ lim
t→∞

1

t

∫ t

0
1B

(
X̃ε1

s

)
ds = μ̃ε1(B)

}
,

O ≡
{
ω

∣∣∣∣ lim
t→∞

1

t

∫ t

0
1B

(
Xi,ε1

s

)
ds = μ̃ε1(B)

}
,

it is clear that Õ ∈ F∞,O ∈ F∞ and P x(Õc) = 0 by (2.5). Thus

P x(Õc) = P̃ x(Oc) = Ex
(
1OcZi,ε1∞

) = 0. (3.17)

Since lemma 3.4 claims that 0 < Zi,ε1∞ < ∞ in probability 1, this implies that P x(Oc) = 0,
i.e.

P x

(
lim
t→∞

1

t

∫ t

0
1B

(
Xi,ε1

s

)
ds = μ̃ε1(B)

)
= 1. (3.18)

�

3.3. Proofs of theorems 2.5, 2.6 and 2.7

Lemma 3.5. For any ε2 > 0,
∫
(Rd )N

exp
{−H(x)

ε2

}
dx < ∞, and for any r > 0, {x ∈

(Rd)N |H(x) � r} is compact.

Proof. Since H(x) �
∑N

i=1 U(xi), by A 2.3.1, the lemma follows. �

Lemma 3.6. The family of probability measures (με2 , ε2 > 0) is tight, and for any δ > 0,

lim
ε2→0

με2(x ∈ (Rd)N |H(x) � δ) = 1. (3.19)

This means that if μ′ is a weak limiting measure of
(
με2

)
, then μ′(�) = 1.

The proof of this lemma is similar to the content of section 2 in [9], if lemma 3.5 holds. So, it
is omitted here.

Proof of theorem 2.5. By corollary 7.5.24 in [21],

lim
t→∞ sup

‖x‖�r

P
(
Xε2

t ∈ �δ

∣∣Xε2
0 = x, x ∈ (Rd)N

) = με2(�δ), (3.20)

and by lemma 3.6, limε2→0 με2(�δ) = 1, the theorem follows. �

Proof of theorem 2.6. Noting that

H(x) =
N∑

i=1

U(xi) +
1

2

N∑
i=1

N∑
j>i

aij

[
q∑

k=1

(
xik − xjk

)2

]
� 0,

12



J. Phys. A: Math. Theor. 42 (2009) 065101 Y Liu and F Yang

it is easy to check that if U satisfies one of (1), (2), (3) in theorem 2.6, then � ∈ S. So,
theorem 2.5 implies the results. �

Proof of theorem 2.7. By lemma 3.6, for any open δ-neighborhood �̃δ of �̃

lim inf
ε2→0

με2(�̃δ) � μ(�̃δ) � μ(�̃) > 0.

If m > 1, q < d, then �̃ ∩ S = ∅. So, there is a δ0 > 0 such that �̃δ0 ∩ Sδ0 = ∅, thus

lim inf
ε2→0

lim
t→∞ sup

‖x‖�r

P
(
Xε2

t /∈ Sδ0

∣∣Xε2
0 = x, x ∈ (Rd)N

)
� lim inf

ε2→0
lim
t→∞ sup

‖x‖�r

P
(
Xε2

t ∈ �̃δ0

∣∣Xε2
0 = x, x ∈ (Rd)N

)
� μ(�̃)

> 0. �
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